Least Action

Nontrivializing triviality..and vice versa.

Archive for the ‘Electronics’ Category

An inexpensive way to connect an HDMI screen to a Macbook

leave a comment »

I am not a huge Mac fan, but I do happen to have access to a Macbook Air, and since I find it hard to carry two laptops, a tablet and at least 5-6 books daily, I wanted to figure out a cheap way to get my Macbook Air to work with my HP Pavilion 27xi HDMI monitor. After some research, I went ahead and purchased an AmazonBasics Mini DisplayPort (Thunderbolt) to HDMI Adapter cable for about $10. There are many more cables available on Amazon, and most of them are much more expensive. But they’re all manufactured in roughly the same areas of our planet, so I wasn’t convinced about buying a costlier adapter especially for something I wouldn’t be heavily relying on. But this adapter is very nifty and works well.

The only other problem was to get the resolutions to match. For this, click on the leftmost button on the touch-activated panel of the HP Pavilion 27xi monitor. A menu opens up. Use the third soft key from left (with a “-” symbol) to navigate down to Image Control. When Image Control is highlighted, tap on the leftmost soft key again. Now, select Custom Scaling and press the leftmost soft key. Then, select Overscan and select “Off”. This should eliminate the problem of screen contents on the HDMI monitor being chopped. In my case at least, the default setting (Auto) does not work well with the Macbook Air I am working on.

Written by Vivek

November 6, 2014 at 21:53

Posted in Electronics

Tagged with , , ,

Thermal Noise Engines

leave a comment »

I just stumbled upon an interesting paper today on arXiv, from a researcher at the Department of Electrical Engineering at Texas A&M University. I am copying the abstract entry on the pre-print archive below.

Thermal noise engines

Authors:Laszlo B. Kish
(Submitted on 29 Sep 2010 (v1), last revised 20 Oct 2010 (this version, v5))

Electrical heat engines driven by the Johnson-Nyquist noise of resistors are introduced. They utilize Coulomb’s law and the fluctuation-dissipation theorem of statistical physics that is the reverse phenomenon of heat dissipation in a resistor. No steams, gases, liquids, photons, combustion, phase transition, or exhaust/pollution are present here. In these engines, instead of heat reservoirs, cylinders, pistons and valves, resistors, capacitors and switches are the building elements. For the best performance, a large number of parallel engines must be integrated to run in a synchronized fashion and the characteristic size of the elementary engine must be at the 10 nanometers scale. At room temperature, in the most idealistic case, a two-dimensional ensemble of engines of 25 nanometer characteristic size integrated on a 2.5×2.5cm silicon wafer with 12 Celsius temperature difference between the warm-source and the cold-sink would produce a specific power of about 0.4 Watt. Regular and coherent (correlated-cylinder states) versions are shown and both of them can work in either four-stroke or two-stroke modes. The coherent engines have properties that correspond to coherent quantum heat engines without the presence of quantum coherence. In the idealistic case, all these engines have Carnot efficiency, which is the highest possible efficiency of any heat engine,without violating the second law of thermodynamics.

Direct Link: http://arxiv.org/abs/1009.5942

This is a very interesting paper. Who knows what the future has in store for us…quantum thermal power stations?

Written by Vivek

October 23, 2010 at 00:20

The End of An Era

leave a comment »

The BIOS will soon be gone…


Written by Vivek

October 1, 2010 at 22:36

Posted in Electronics, Technology